
1 | ANU College of Engineering and Computer Science	 August 2020

Protection
Week 4 Laboratory for Concurrent and Distributed Systems

Uwe R. Zimmer based on material by Alistair Rendell

Pre-Laboratory Checklist

vv You mastered tasks in basic form.
vv You know what happens if concurrent tasks are ac-
cessing shared data in an uncoordinated way.

Hurdle Lab – you need to get this right!

Objectives
In this lab you will finally see the smooth and elegant solutions to the shared-data-among-con-
current-entities problem. Rejoice and enjoy as you will leave shared variables based synchroni-
zation behind you. The lab is only loosely based on the Massive Attack album Protection or its
remix version No Protection. There will be a lot of talk about protected and unprotected forms
of accessing your data though. By the end of this lab, your solutions to shared memory based
communication methods will have improved by two decades of research.

Your tutor needs to believe that you understood the material and solved exercise 1-3 on your
own, i.e. you need to attend your lab. Solutions need to be uploaded by the end of week four.

Interlude:  Protected Objects

In a nutshell, protected objects encapsulate data and provide concurrency-safe access to it.
In terms of syntax, this will look like this (from the Ada Reference Manual, section 9.4):

protected_type_declaration ::=
 protected type defining_identifier
 [known_discriminant_part] [aspect_specification] is
 [new interface_list with] protected_definition;

single_protected_declaration ::=
 protected defining_identifier [aspect_specification] is
 [new interface_list with] protected_definition;

protected_definition ::=
 { protected_operation_declaration }
 [private { protected_element_declaration }]
 end [protected_identifier]

2 | ANU College of Engineering and Computer Science	 August 2020

protected_operation_declaration ::=
 subprogram_declaration	| entry_declaration | aspect_clause

protected_element_declaration ::=
 protected_operation_declaration | component_declaration

protected_body ::=	
 protected body defining_identifier [aspect_specification] is
 { protected_operation_item }
 end [protected_identifier];

protected_operation_item ::=
 subprogram_declaration	| subprogram_body | entry_body | aspect_clause

A few things to take note of:

•	 Something you will likely not use for some time are aspects on protected objects. Similar
to tasks you can add further specifications to nail down what behaviour you need, e.g.:

protected Object
 with Priority => Priority’Last is

which would control the so-called ceiling priority of this protected ob-
ject – which will become important in real-time systems.

•	 Protected objects can also be used to implement an interface in the common, object-ori-
ented style. Those implementations will become final and no further derivations are possi-
ble. This is due to the inheritance anomaly1 which prevents unconstrained, object-oriented
inheritance to be applied in concurrent systems. This could look for instance like this:

protected type Protected_Queue is new Queue_Interface with

 overriding entry Enqueue (Item : Element);
 overriding entry Dequeue (Item : out Element);
 …

Next week we will see that task types can implement the same interface:

task type Protected_Queue_Task is new Queue_Interface with

 overriding entry Enqueue (Item : Element);
 overriding entry Dequeue (Item : out Element);

The rest is much easier to be seen in a few examples. Compare the “unprotected” package on
the left with the protected object on the right:

generic
 type Element is (<>); -- any discrete type
 Init : Element; -- initial value

package Unprotected_Element_Generic is

 package Unprotected_Element is

 function Get return Element;
 procedure Set (E : Element);

 procedure Inc;
 procedure Dec;

 private
 Store : Element := Init;

 end Unprotected_Element;

end Unprotected_Element_Generic;

generic
 type Element is (<>); -- any discrete type
 Init : Element; -- initial value

package Protected_Element_Generic is

 protected Protected_Element is

 function Get return Element;
 procedure Set (E : Element);

 entry Inc;
 entry Dec;

 private
 Store : Element := Init;

 end Protected_Element;

end Protected_Element_Generic;

1	 S. Matsuoka and A. Yonezawa. Analysis of inheritance anomaly in object-oriented concurrent programming
language. In Research Directions in Concurrent Object-Oriented Programming, pages 107–150. 1993.

3 | ANU College of Engineering and Computer Science	 August 2020

Rather small syntactical differences:

•	 package is replaced by protected for the module which encapsu-
late the data (Store) which potentially needs protection.

•	 Some of the procedures are replaced by entries. At this point it not quite clear why
we would change some procedures but not others, but it will come in a moment.

Let’s look at the implementations to gain the full picture:

package body Unprotected_Element_Generic is

 package body Unprotected_Element is

 function Get return Element is (Store);

 procedure Set (E : Element) is

 begin
 Store := E;
 end Set;

 procedure Inc is

 begin
 Store := Element’Succ (Store);
 end Inc;

 procedure Dec is

 begin
 Store := Element’Pred (Store);
 end Dec;

 end Unprotected_Element;

end Unprotected_Element_Generic;

package body Protected_Element_Generic is

 protected body Protected_Element is

 function Get return Element is (Store);

 procedure Set (E : Element) is

 begin
 Store := E;
 end Set;

 entry Inc when Store < Element’Last is

 begin
 Store := Element’Succ (Store);
 end Inc;

 entry Dec when Store > Element’First is

 begin
 Store := Element’Pred (Store);
 end Dec;

 end Protected_Element;

end Protected_Element_Generic;

Now we can see what’s behind the entry idea: The two entries on the right (as opposed to the
procedures on the left) have conditions attached to them (called guards). The package on the
left is wide open to access by any task at any time – no task will ever be delayed or blocked
while accessing any of the operations. At least that means it’s fast … yet …

On the right side, the keyword protected as well as the specific structure around the entry
definitions provide a set of rules which restrict access to those operations under certain condi-
tions:

•	 procedures enforce mutual exclusion with all other operations in the same protected
object. This means that maximally one task can enter a procedure inside a protected ob-
ject (also called a protected procedure) at any one time and no other task can be inside
the same protected object while this one task is operating inside the protected object.

•	 entries enforce the same constraints as procedures, yet are also associated with a guard
(boolean expression) which needs to be fulfilled before a task is allowed to enter (other-
wise it is blocked and neatly queued up until the guard opens up again). Those guards
are being re-evaluated when a task leaves a procedure or entry within the same pro-
tected object – i.e. if a task leaves e.g. the Dec entry, then both guards will be re-evaluated
and a potentially waiting task on the Inc entry can now gain permission to enter next.

•	 functions are side-effect free with respect to the protected data, i.e. the compiler will
treat any write access to the protected data from within a protected function as an er-
ror. Given that, it is perfectly fine to grant many tasks concurrent access to protected
functions, as long as this happens in mutual exclusion with procedures and entries.

In short: there can only ever be maximally one task inside a protected object if this task en-
tered via a protected procedure or entry. Alternatively, multiple tasks can use one or multiple
protected functions concurrently.

4 | ANU College of Engineering and Computer Science	 August 2020

Exercise 1:  Check it out

Let’s test the above by hammering both of the structures with multiple tasks:

with Ada.Text_IO; use Ada.Text_IO;
with Protected_Element_Generic;
with Unprotected_Element_Generic;

procedure Count_Up is

begin
 for i in 1 .. 20 loop
 declare
 package Protected_Natural is new Protected_Element_Generic
 (Element => Natural, Init => 0);
 package Unprotected_Natural is new Unprotected_Element_Generic
 (Element => Natural, Init => 0);

 use Protected_Natural;
 use Unprotected_Natural;

 task type Count_up_by (Difference : Natural) is
 entry Done;
 end Count_up_by;

 task body Count_up_by is

 begin
 for i in 1 .. Difference loop
 Unprotected_Element.Inc;
 end loop;

 for i in 1 .. Difference loop
 Protected_Element.Inc;
 end loop;

 accept Done;
 end Count_up_by;

 Counters : array (1 .. 10) of Count_up_by (1_000);

 begin
 for t of Counters loop
 t.Done;
 end loop;

 Put_Line (“Protected value:” & Natural’Image (Protected_Element.Get) &
 “ - Unprotected value:” & Natural’Image (Unprotected_Element.Get));
 end;
 end loop;
end Count_Up;

Download and run this program to see what happens. So far so obvious, right? Now for the
more interesting part of your tests:

•	 What will happen if you exchange the two inner for-loops (if anything)?

•	 What will happen if you increment both values in the same for-loop (if anything)?

•	 What will happen if you count only to 10 inside each task (if anything)?

The results may surprise you – yet what would you expect to be the one thing which will never
change with any of the above alternations? If you find a configuration for which the unprotect-
ed version appears to work: what can you do with that observation?

Submit your findings as a few lines of plain text explanations (keep it brief) to the Submission-
App under “Lab 4 Checked“.

http://cs.anu.edu.au/SubmissionApp
http://cs.anu.edu.au/SubmissionApp

5 | ANU College of Engineering and Computer Science	 August 2020

Exercise 2:  Canons on sparrows

This is like asking you to make a Ferrari look like an original Fiat Cinquecento, but sometimes
I ask you to do simple things as well: Program a semaphore by means of a protected object.
While semaphores are very simple structures, they need to be implemented spot-on or they
are useless.

Here is a test framework for you to see your semaphores in classical action:

with Ada.Text_IO; use Ada.Text_IO;
with Id_Dispenser;
with Semaphores; use Semaphores;

procedure Philos is

 No_of_Philos : constant Positive := 5;
 Meditation : constant Duration := 0.0;

 type Table_Ix is mod No_of_Philos;

 Forks : array (Table_Ix) of Binary_Semaphore (Initially_Available => True);

 package Index_Dispenser is new Id_Dispenser (Element => Table_Ix);
 use Index_Dispenser;

 task type Philo;
 task body Philo is

 Philo_Nr : Table_Ix;

 begin
 Dispenser.Draw_Id (Id => Philo_Nr);

 Put_Line (“Philosopher” & Table_Ix’Image (Philo_Nr) & “ looks for forks.”);
 Forks (Philo_Nr).Wait; delay Meditation; Forks (Philo_Nr + 1).Wait;
 Put_Line (“Philosopher” & Table_Ix’Image (Philo_Nr) & “ eats.”);

 Forks (Philo_Nr).Signal; Forks (Philo_Nr + 1).Signal;

 Put_Line (“Philosopher” & Table_Ix’Image (Philo_Nr) & “ dropped forks.”);

 end Philo;

 Table : array (Table_Ix) of Philo; pragma Unreferenced (Table);

begin
 null;
end Philos;

Philosophers sitting around a table and using two forks (one on the left and one the right of
each philosopher). They can only eat if they acquired two forks and will put both down after
being well fed.

This is unfortunately again incomplete and requires two modules from your side: The Sema-
phores package which needs to provide at least a binary semaphore (following the suggested
syntax) as well as a package called: the Id_Dispenser. It is used in a way such that each task
(philosopher) can draw its own unique id starting with the first value of the type provided in the
instantiation of this generic package. Start by implementing this additional package. Recon-
struct the details of the package from the way it is used here. Hint: you need to be able to
guarantee that each task actually receives a unique id – irrespective of when tasks are request-
ing theirs.

Now run the above and play with different Meditation delays for the philosophers between
picking up the left and the right fork. What happens? Are your semaphores working or are they
broken? Can you make sure everybody gets to eat and the number of forks stays constant?

Submit your Semaphore.zip archive to the SubmissionApp under “Lab 4 Cinquecento“ for de-
tailed code review by us.

http://cs.anu.edu.au/SubmissionApp

6 | ANU College of Engineering and Computer Science	 August 2020

Exercise 3:  Tasks in lockstep

The protected object mechanisms can not only be used to share data, but also to synchronize
actions. Here comes a pattern which (attempts) to synchronize all tasks and release all of them
once all tasks are ready to proceed. The Count attribute on entries comes in handy for this pur-
pose as it indicates how many tasks are currently waiting on this particular entry. Here we open
the entry Synchronize based on the number of waiting tasks:

with Ada.Task_Identification; use Ada.Task_Identification;
with Ada.Text_IO; use Ada.Text_IO;

procedure Synchronized_Action is

 No_Of_Tasks : constant Positive := 5;

 protected type Blockers (Group_Size : Positive) is

 entry Synchronize;

 end Blockers;

 protected body Blockers is

 entry Synchronize when Synchronize’Count = Group_Size is

 begin
 null;
 end Synchronize;

 end Blockers;

 Blocker : Blockers (No_Of_Tasks);

 task type In_Synchronized_Stages;

 task body In_Synchronized_Stages is

 begin
 Put_Line (“Task “ & Image (Current_Task) & “ starting up”);
 delay 1.0;

 Blocker.Synchronize;

 Put_Line (“Task “ & Image (Current_Task) & “ in stage 1”);
 delay 1.0;

 Blocker.Synchronize;

 Put_Line (“Task “ & Image (Current_Task) & “ in stage 2”);
 end In_Synchronized_Stages;

 Staged_Tasks : array (1 .. No_Of_Tasks) of In_Synchronized_Stages;

begin
 null;
end Synchronized_Action;

Now I have to admit that this program looks better than it runs: It “hangs” - or at least it seems
to stall for all but the most patient users. The idea of the program is that all tasks re-synchro-
nize between stages, such that no task should every work in a later stage while some other
task is still busy in an earlier stage.

Repair this program such that it indeed shows the intended behaviour and runs to completion.
Hint: What is the temporal sequence in which you expect to see outputs on the screen? What
is the rhythm in which outputs actually turn up? How can this possibly happen? … now you
show see the bug (right?) and can repair it.

Submit your Synchronized_Action.zip archive to the SubmissionApp under “Lab 4 Lockstep“
for code review by us.

This third exercise concludes your hurdle assessment.

http://cs.anu.edu.au/SubmissionApp

7 | ANU College of Engineering and Computer Science	 August 2020

Exercise 4:  Multicast server

Let me throw in one more concept for you and you can program already rather interesting
devices. If tasks are waiting for something to happen it can well be different things for different
tasks. You can of course program as many guarded entries as there are different guards. This
can be rather labour intensive as often those entries are almost identical besides a tiny vari-
ation in the guard. To address this issue, you can formulate what is called an entry family: It
looks like a single entry, but it actually produces many entries, each one with their own guard
and waiting queue.

Let’s learn about this on a concrete example: Assume that tasks want to wait until there is a
message for them. Obviously we could program a universal guard which opens if any mes-
sages arrive and tasks can then check wether they actually got mail – or: we can write an entry
family such that each task can wait for a message which is actually for it. Have a look at this:

generic
 type Message is private;
 Postboxes : Positive := 3;

package Message_Server is

 subtype Box is Positive range 1 .. Postboxes;
 type Boxes is array (Positive range <>) of Box;
 type Box_Content is record
 Available : Boolean := False;
 Data : Message;
 end record;
 type Box_Contents is array (Box) of Box_Content;

 protected Post_Office is

 procedure Send (To : Box; Data : Message);
 procedure Multicast (To : Boxes; Data : Message);
 procedure Broadcast (Data : Message);
 entry Receive (Box) (Data : out Message);

 private
 Store : Box_Contents;
 Check_Multicast : Boolean := True;
 end Post_Office;
end Message_Server;

All seems familiar with the only unusual spot being the additional “(Box)” thingy in front the
entry Receives’s parameter list. This expresses that there are in fact not one Receive entry,
but as many as the discrete type in parenthesis has elements (in this case: three). This enables
users of this Post_Office to queue up for the right Box instead of being woken up every time a
new message arrives for somebody. Nifty, isn’t it?

8 | ANU College of Engineering and Computer Science	 August 2020

This is how the implementation side of such a construct looks like:

package body Message_Server is

 protected body Post_Office is

 procedure Send (To : Box; Data : Message) is

 begin
 Store (To) := (Available => True, Data => Data);
 end Send;

 procedure Multicast (To : Boxes; Data : Message) is

 begin
 for B in To’Range loop
 Send (To (B), Data);
 end loop;
 end Multicast;

 procedure Broadcast (Data : Message) is

 begin
 for B in Box loop
 Send (B, Data);
 end loop;
 end Broadcast;

 entry Receive (for B in Box) (Data :out Message) when Store (B).Available is

 begin
 Store (B).Available := Receive (B)’Count > 0;
 Data := Store (B).Data;
 Check_Multicast := True;
 end Receive;

 end Post_Office;
end Message_Server;

There is an important detail to be observed here: Guards can never use entry parameters, but
they can use the value of the family enumerator (B in this case), as this is actually a static value
(think about it for a moment to confirm this to be true).

9 | ANU College of Engineering and Computer Science	 August 2020

Now we use this new package for instance like this:

with Ada.Text_IO; use Ada.Text_IO;
with Id_Dispenser;
with Message_Server;

procedure Multi_Cast is

 package Positive_Dispenser is new Id_Dispenser (Element => Positive);

 Number_Of_Tasks : constant Positive := 3;

 type Colour is (Red, Green, Blue, Yellow, Magenta, Cyan);
 package Colour_Server is new Message_Server (Message => Colour,
 Postboxes => Number_Of_Tasks);
 use Colour_Server;

 task type Client;

 Clients : array (Box) of Client;

 task body Client is

 Data : Colour;
 Id : Box;

 begin
 Positive_Dispenser.Dispenser.Draw_Id (Id);

 for i in 1 .. 3 loop -- collecting the three messages per task
 Post_Office.Receive (Id) (Data);
 Put_Line (“Task” & Box’Image (Id) & “ received: “ & Colour’Image (Data));
 end loop;
 end Client;

begin
 -- Broadcast data (resulting in 1 message per task)
 Post_Office.Broadcast (Cyan);
 delay 0.1;

 -- Send individual data (1 message per task)
 declare
 Paint : Colour := Colour’First;
 begin
 for i in Clients’Range loop
 Post_Office.Send (i, Paint);
 Paint := Colour’Succ (Paint);
 end loop;
 end;
 delay 0.1;

 -- Multicast data to some and individual to the rest (1 message per task)
 declare
 Recipients : constant Boxes := (1, 3);
 begin
 Post_Office.Multicast (Recipients, Magenta);
 Post_Office.Send (2, Yellow);
 end;

end Multi_Cast;	

Now run the Multi_Cast program. It will hopefully behave as you expect it it to, but let me add
some challenge: Comment-out the delay statements and try again. What happens? Why does
that happen?

What you will find is called a race condition, i.e. the behaviour of the program becomes non-
deterministic and depends on which task gets to a specific spot first. This is not always bad,
but let’s fix it here anyway. We need to avoid that some parts of the program are getting ahead,
before other tasks have caught up. To this end you need to make the sending operations con-

10 | ANU College of Engineering and Computer Science	 August 2020

ditional such that previous messages are not overwritten before they have been read. I leave
this to you how you manage this in detail (there are many options), but let me give you some
inspirations. The guard for the broadcast entry could for instance look like this:

 entry Broadcast (Data : Message)
 when (for all B in Box => not Store (B).Available) is

The case is more complicated for the multicast, so let me suggest an option for this one too:

 entry Multicast (To : Boxes; Data : Message) when Check_Multicast is

 begin
 if (for some i in To’Range => Store (To (i)).Available) then
 Check_Multicast := False;
 requeue Multicast;
 else
 …

This is using a technique which you did not see before: requeue. Here it simply sends a task
back onto the same entry for the case that not all Mailboxes which are addressed are already
empty. The boolean qualifier (for some i in To’Range => Store (To (i)).Available) ex-
presses in standard math notation: : .Store To Availablei i7 ^^ h h or in English: some message
still needs to be read first. You will have noticed that in such a schema, Check_Multicast has to
be set to True someplace - where?. You should now be able to figure out the rest and to find a
way to also synchronize the Send method properly. If you succeed, then your program should
run through without the delay statements.

Submit your working Multi_Cast.zip archive to the SubmissionApp under “Lab 4 Multicast“ for
a detailed code review by us.

Make Sure You Logout
to Terminate Your Session!

Outlook
Next week you will make your tasks listen to multiple channels at the same time and handle
many more interesting cases of interacting tasks.

http://cs.anu.edu.au/SubmissionApp

